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Inferring aquifer storage parameters using satellite and in situ
measurements: Estimation under uncertainty
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[1] We present a robust optimization method for estimating
aquifer storage parameters (specific yield or storativity)
using the Gravity Recovery and Climate Experiment
(GRACE) data, in situ well level observations, and other
ancillary information. Uncertainty inherent in the remotely
sensed and in situ time series can adversely affect the
parameter estimation process and, in the worse case, make
the solution completely meaningless. Our estimation
problem is formulated to directly minimize the negative
impact of data uncertainty by incorporating bounds on
data variations. We demonstrate our method for the
interconnected Edwards‐Trinity Plateau and Pecos Valley
aquifers in central Texas. The study area is divided into
multiple zones based on the geology and monitor well
coverage. Our estimated aquifer storage parameters are
consistent with previous results obtained from pumping
tests and model calibration, demonstrating the potential of
using GRACE data for validating regional groundwater
model parameters. Citation: Sun, A. Y., R. Green, M. Rodell,
and S. Swenson (2010), Inferring aquifer storage parameters using
satellite and in situ measurements: Estimation under uncertainty,
Geophys. Res. Lett., 37, L10401, doi:10.1029/2010GL043231.

1. Introduction

[2] Although the fast advance of remote and in situ
sensing technologies has significantly improved our capa-
bility to characterize hydrologic processes, the inherent
uncertainty and limitations associated with various Earth
observation products remain obstacles to those who wish to
incorporate these data in their decision making processes. In
this work, a robust optimization framework is introduced for
estimating aquifer storage parameters using GRACE data
while minimizing the adverse impact of data uncertainty.
[3] GRACE, a joint satellite mission of the U.S. National

Aeronautics and Space Administration (NASA) and German
Space Agency, has been making detailed measurements of
Earth’s gravity field since March 2002. GRACE provides
the first opportunity for hydrologists to estimate terrestrial
water storage (TWS) variations, or DTWS, over regional
watersheds. To trace variations of individual hydrological
components such as groundwater, the GRACE DTWS must
be disaggregated using ancillary information to remove the

contributions of all other significant water storage compo-
nents (e.g., snow and surface waters). A major challenge, as
described next, is that all remotely sensed and in situ time
series used in these analyses can be uncertain.
[4] For example, the accuracy of GRACEDTWS is limited

by (a) instrumentation error, (b) inaccuracies in atmospheric
and ocean fields used to remove the effects of atmosphere
and ocean from GRACE observations, and (c) leakage error
arising from using a limited range of spherical harmonics
to represent the gravity field variations [Seo et al., 2006].
Decorrelation and smoothing are commonly applied to
improve the signal‐to‐noise ratios of the GRACE DTWS
estimates; however, these operations may introduce further
uncertainty in DTWS [Swenson et al., 2003; Swenson and
Wahr, 2006a, 2006b; Seo et al., 2006]. For near‐surface
soil moisture (SM), the North American Land Data
Assimilation System (NLDAS) has been used as indepen-
dent estimates for removing soil moisture storage changes
(DSM) from the GRACE DTWS [e.g., Strassberg et al.,
2007]. Uncertainty in NLDAS data may result from un-
certainties in land surface models and in atmospheric forcing
variables [Luo et al., 2003]. The estimated groundwater
level variations can be uncertain because of the sparse
coverage of groundwater monitor wells. In many situations,
one can have access to only the estimated bounds of these
uncertain time series. A frequent need is, therefore, to inte-
grate these bounds on uncertainty while performing param-
eter estimation.
[5] In the following, we first present a general robust

optimization approach for inferring aquifer storage para-
meters and then demonstrate it using data related to the
interconnected Edwards Trinity Plateau (ETP) and Pecos
Valley (PV) aquifers (ETP‐PV hereinafter).

2. Problem Formulation

[6] The groundwater storage change (in terms of equiva-
lent water thickness), DGWS, can be related to average
water level or hydraulic head changes (Dh) as [Fetter, 1994]

�GWS ¼ 1

C

XN
j

SjCj�hj;C ¼
XN
j

Cj ð1Þ

where S is the specific yield for unconfined aquifers or
storativity for confined aquifers; N is the number of subareas
or zones defined for a study region; Cj are the sizes of
subareas; and C is the total aquifer area. DGWS can also be
estimated by subtracting the sum of all other storage com-
ponents (DVk) from the GRACE DTWS

�GWS ¼ �TWS �
XK
k

�Vk ð2Þ

1Geosciences and Engineering Division, Southwest Research
Institute, San Antonio, Texas, USA.

2Hydrological Sciences Branch, NASA Goddard Space Flight Center,
Greenbelt, Maryland, USA.

3Department of Physics and Cooperative Institute for Research in
Environmental Sciences, University of Colorado, Boulder, Colorado,
USA.

Copyright 2010 by the American Geophysical Union.
0094‐8276/10/2010GL043231

GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L10401, doi:10.1029/2010GL043231, 2010

L10401 1 of 5

http://dx.doi.org/10.1029/2010GL043231


where K is the number of other storage components. Com-
bining Eqns (1) and (2), we obtain a linear system with
spatially distributed S as unknowns

1

C

XN
j

SjCj�hij � �TWSi �
XK
k

�Vik

 !
; i ¼ 1; . . . ;M ð3Þ

or equivalently

Ax � b ð4Þ

where M is the number of periods where data are available;
rows of the M × N matrix A correspond to the average
Dh (area‐weighted) for the i‐th period; columns of A cor-
respond to average Dh for the j‐th zone; elements of x are
the unknown S values for different zones; and elements of
b correspond to the DGWS values estimated from GRACE
and NLDAS time series [i.e., Eqn (2)]. The number of zones
to be used for a certain study region may be determined based
on the knowledge of regional hydrostratigraphy and coverage
of monitor networks.
[7] The solution to Eqn (4) is usually sought in a least

squares sense:

min
x

k Ax� b k ð5Þ

where k·k represents the Euclidean norm. For reasons
mentioned in Section 1, A and b are both uncertain and the
errors are not necessarily Gaussian distributed. As a result,
the ordinary least square method is no longer the optimal
estimator. We formulate a robust optimization problem

(robust least squares to be more specific), in which a robust
solution to Eqn (5) is sought that satisfies constraints for
every possible realization of the uncertain parameters within
the user‐defined uncertainty bounds [El Ghaoui and Lebret,
1997; Lobo et al., 1998; Sun et al., 2006; Ben‐Tal et al.,
2009]. The robust optimization paradigm only requires
knowing the uncertainty bounds of parameters, but not their
actual probability distributions.
[8] Let ai 2 <N represent rows in A and bi represents

elements of b. We now assume that ai is in an ellipsoidal
uncertainty region and bi is subject to interval uncertainty
[Ben‐Tal et al., 2009]

ai 2 �i;�i ¼ ai þ Piu :k u k� 1f g ð6aÞ

bi 2 bi � pi; bi þ pi
� � ð6bÞ

where ai and bi represent nominal values of ai and bi,
respectively; Piu and pi are user‐defined uncertainty bounds.
The nominal values represent the best estimates one can
obtain to support the “here‐and‐now” decision making. The
ellipsoidal uncertainty structure used in Eqn (6a) is quite
general. For example, it can be used to represent an N‐
dimensional confidence ellipsoid centered at ai, where the
confidence intervals associated with each element of ai are
used to specify the uncertainty bounds. If the errors are
independent, Pi is simply a diagonal matrix with standard
deviations of ai’s elements in its diagonal.
[9] For the uncertainty structures specified in Eqns (6a)

and (6b), a robust optimization problem may be formu-
lated to minimize the worst case bounds [Lobo et al., 1998]

min
X

aTi x� bi
�� ��þ k Pix k þ pi
� �2h i1=2

; i ¼ 1; . . . ;M ð7Þ

Figure 1. The ETP‐PV study region and locations of groundwater monitor wells. The wells are divided into four zones
(dark solid lines) based on the regional hydrostratigraphy and well locations.
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The norm kPixk can be considered a regularization term that
penalizes large x in directions with considerable uncertainty.
Eqn (7) is equivalent to the following form

min s
s:t: k t k� s

aTi x� bi
�� ��þ k Pix k þpi � ti; i ¼ 1; . . . ;M
L � x � U

ð8Þ

where t and s are introduced to convert the objective func-
tion in Eqn (7) into a number of constraints to facilitate
problem solving, and ∣·∣ represents the absolute value. A
linear constraint is added for the user to impose lower and
upper limits (L and U) on x. Eqn. (8) defines our robust
optimization problem and it is solved using the Matlab™
toolbox SeDuMI [Sturm, 1998].

3. Demonstration

3.1. ETP‐PV Study Area

[10] The interconnected ETP‐PV aquifers, extending over
an area of 115,000 km2, provide water supplies to all or part
of 39 counties in the semiarid to arid west central Texas
(Figure 1). The ETP aquifer is one of the largest contiguous
karst regions in the United States [Kastning, 1984]. The
extreme annual variability of precipitation over ETP‐PV and
the expected increase in well pumpage have raised concerns
over future groundwater availability in the region, especially
under drought conditions [Anaya and Jones, 2009]. Anal-
yses of water availability are directly affected by aquifer
storage parameters. Measuring these parameters using in
situ methods usually involves considerable uncertainty
[Scanlon et al., 2002] and the results may not be valid at the
regional level. Our main interest is to investigate how the
integrated use of satellite data, in situ observations, and
the robust optimization techniques may improve the reli-
ability of such water availability analyses.

3.2. Data and Data Processing

[11] We assume thatDSM andDGWS account for most of
theDTWS variability in the semiarid to arid ETP‐PV region,
where there is no significant presence of other hydrologic
components such as surface water.
3.2.1. Water Level Measurements
[12] Water level measurements were extracted from a Texas

Water Development Board (TWDB) groundwater database
(available at http://www.twdb.state.tx.us/publications/reports/
GroundWaterReports/GWDatabaseReports/GWdatabaserpt.
htm), which includes periodic measurements collected by
TWDB and its cooperators from a statewide monitoring
network consisting of more than 6,500 wells [Boghici, 2008].
Active pumping wells and wells that are potentially affected
by active pumping were excluded from consideration (R.
Boghici, personal communication, October 2009), resulting
in only 30 wells satisfying our search criteria (Figure 1). The
wells were grouped into four zones (Figure 1) on the basis of
major hydrostratigraphic units identified for the region
[Anaya and Jones, 2009, Figure 5–1]. The areas of the
four zones are approximately 15,000, 24,000, 46,000, and
30,000 km2, respectively. A linear trend was removed from
each of the water level time series to obtain Dh. Seasonal
averages of Dh and the associated standard deviations were
calculated first for each of the wells and then for each of the

four zones. The area‐weighted, seasonal Dh averages are
used as nominal values for elements of A.
3.2.2. GRACE DTWS
[13] The monthly DTWS was obtained for the study area

for the period from August 2002 to December 2007. Briefly,
a decorrelation filter was first applied to the GRACE data
produced by the Center for Space Research (Release 4),
followed by Gaussian smoothing using a radius of 300km.
Filtering naturally attenuates signal strength. A scaling
parameter was calculated for the study area to restore the
attenuated GRACE signals by using the Global Land Data
Assimilation System (GLDAS) data [Rodell et al., 2004].
Because of its coarse resolution, GRACE does not detect
DTWS of an aquifer in isolation, but a region centered about
the aquifer. So the second purpose of scaling is to use the
GLDAS model simulation to relate the regional average
(sampled in a manner consistent with GRACE processing)
to the aquifer average. This so‐called basin‐specific aver-
aging kernel was introduced by Swenson and Wahr [2002,
2006b] to minimize the effects of GRACE uncertainty while
faithfully representing the water storage changes in a region.
Previous simulations show that the aquifer average can
be well represented by applying this scaling procedure
[Swenson and Wahr, 2006b]. Neither DSM nor DGWS data
is filtered. So the side effect of scaling is to restore the
DTWS to a state that can be directly disaggregated by
other data series. The resulting scaling parameter of 1.5 was
applied to the monthly DTWS. The root‐mean‐square
(RMS) error associated with the estimated monthly DTWS
is 1.9 cm. A smoothed seasonal DTWS time series was
constructed by applying a low‐pass filter consisting of six
terms (mean, linear trend, annual sine and cosine, semian-
nual sine and cosine) to the monthly series [Yeh et al.,
2006]. From the monthly RMS, the seasonal DTWS RMS
was estimated to be 1.1 cm [Strassberg et al., 2007, Eqn. 2].
3.2.3. NLDAS DSM
[14] The monthly DSM was obtained from the NLDAS,

which uses hourly observation‐based precipitation and solar
radiation, and high‐quality soil and vegetation parameter
fields as inputs [Cosgrove et al., 2003]. A smoothed sea-
sonal DSM time series was then constructed in the same
way as for the monthly DTWS series. Uncertainty in DSM
may be estimated by comparing outputs of different land
surface model outputs with ground truth and calculating
a coefficient of variation (CV) [e.g., Kato et al., 2007].
Without in situ SM measurements, we chose a conservative
CV of 1.0 in our study. This value is much larger than the
CV of 0.3 calculated by Kato et al. [2007] for their Tongyu
reference site, which has similar climatology as our site.
Multiplying the CV with the mean seasonal DSM yields an
uncertainty bound of 0.5 cm for DSM.

4. Results and Discussion

[15] Figure 2 compares the original and smoothed
monthly GRACE DTWS (Figure 2a) and NLDAS DSM
(Figure 2b) series. The DTWS of the study region did not
exhibit significant linear trend during the 5‐year study
period. The DTWS and DSM series have a Pearson’s cor-
relation coefficient of 0.77. We used the robust optimization
in Section 2 to estimate S values for the four zones defined
in Figure 1 by solving Eqn (8). The uncertainty bounds on
elements of A and b were established as follows: (a) the
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area‐weighted standard deviations of the average Dh were
used to bound A, providing diagonal entries for Pi; and
(b) the overall uncertainty in b was estimated using uncer-
tainty bounds on DSM and DTWS, which is about 1.3 cm
(Strassberg et al., 2007, Eqn 3]. The lower and upper
bounds of x were set to 1 × 10−6 and 0.35, respectively, for
all zones (Note that these specific lower and upper bounds
should be set in such a way that they do not have artificial
effect on the estimates). The resulting S values are 0.18,
0.012, 3.8 × 10−3, and 2.3 × 10−3 for the four zones,
respectively.
[16] The relatively high S value obtained for Zone1 is

consistent with the alluvial nature of the PV aquifer; the
S values for Zones 2 to 4 are common for limestone
aquifers and are within the 10−2–10−3 range suggested by
Jennings et al. [2001] based on in situ tests. Mace et al.
[2000] suggested Sy of 8 × 10−4 for the Middle Trinity
Aquifer based on cross‐well pumping data; however, the
authors expected large variability because of the karst geol-
ogy. The S values used in the TWDB’s calibrated ETP‐PV
groundwater availability model are 0.2, 5 × 10−3, 3 × 10−3,
and 3 × 10−3, respectively, for Zone 1 to 4, which are con-
sistent with our estimates. Figure 3a shows the seasonal
average Dh series for the four zones, where the Dh values
corresponding to Zone 2 exhibit the largest variability,
reflecting the confined nature of that portion of the aquifer.
[17] Figure 3b shows the seasonal DTWS − DSM series

(dashed line). Also shown is the DGWS series calculated by
backsubstituting the robust solution to the left‐hand‐side
of Eqn (4). The seasonal average precipitation (bar plot)
obtained from monthly precipitation data (PRISM Climate
Group, Oregon State University, http://www.prismclimate.
org) is also plotted for comparison. The DTWS − DSM and
DGWS show a good correlation for most years during the
study period, except for two periods around 2003 and 2006,
caused probably by the larger uncertainty in the in situ data.
There is a phase lag of about one to two seasons between the
seasonal DGWS series and precipitation, indicating that the
ETP‐PV aquifer is mainly replenished through diffusive

recharge. Improving the monitor network design as well as
the spatial and temporal resolution of the in situ measure-
ments will help improve the S estimates. From this sense,
the robust optimization procedure shown here supports
an evolving decision‐making process—as more accurate
remotely sensed and in situ observation data become
available, one can not only improve the accuracy of the
robust solution, but also enhance the spatial explicitness in
S by representing the study area using more zones.
[18] Finally, a Monte Carlo simulation was performed to

demonstrate the robustness of our solution. For each Monte
Carlo realization, elements of A and b were randomly per-
turbed within their uncertainty bounds and the estimation
problem was solved using the ordinary least squares algo-
rithm with the linear constraint in Eqn (8). The process was
repeated for 200 realizations. We found that the ordinary
least squares estimates can vary over several orders of
magnitudes for some zones. Thus, the ordinary least squares
estimates can be highly unreliable without regularizing the
impact of uncertainty.

5. Conclusion

[19] Aquifer storage parameters (S) play an important role
in transient groundwater flow simulations and in water
resources planning. However, determining representative S
values using traditional techniques (e.g., pumping test) is
challenging, especially at the regional scale. A robust
optimization method is formulated for obtaining distributed
S values using the additional information from GRACE,
essentially enabling a downscaling process. Previous GRACE
studies highlight the importance of identifying distributed S
values, instead of assuming a uniform global value to all wells
in the study area [Rodell et al., 2007]. Our work complements
such a goal. Finally, we emphasize the importance of main-
taining high‐quality in situ monitoring networks, which will
significantly help extend the benefits of GRACE data for
groundwater resources analyses.

Figure 3. (a) Seasonal average Dh for the four zones
shown in Figure 1; (b) Seasonal DTWS − DSM and the
DGWS obtained from the estimated S values. The back-
ground bar plot shows the seasonal precipitation.

Figure 2. Comparison of (a)monthlyDTWS and (b)monthly
DSM for the study period. Circles correspond to the original
data and solid lines correspond to smoothed time series.
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